MEMO DATE: April 25, 2005 TO: Regional Comprehensive Plan Task Force FROM: Jacob Lieb, Acting Lead Regional Planner, SCAG (213) 236-1921 RE: Performance Outcomes for Integrative Regional Environmental Planning ## **Background:** In recent weeks, SCAG staff has participated in a series of discussions regarding potential reforms to the California Environmental Quality Act (CEQA). Among the concepts discussed is that in cases where regions pursue growth planning which, a) establishes clear, beneficial outcomes for environmental and other indicators, and b) is coupled with an EIR analyzing cumulative impacts of the regional plan, that implementation at the project level can be substantially streamlined. A potential change to State law along these lines would provide a substantial opportunity for SCAG to increase the effectiveness of the Regional Comprehensive Plan and Compass efforts. However, even if State law reform efforts are unsuccessful, creating a comprehensive plan that specifically identifies outcomes along a broad range of categories, and analyzing and certifying those outcomes within an EIR, should be viewed favorably. As such, SCAG staff has begun to identify some specific "next steps" upon the completion of the draft RCP during the current fiscal year. These include: - 1. an extended public outreach/comment period beginning at the start of the 2005-2006 fiscal year, - 2. development of plan outcomes through an outreach intensive/consensus based process, - 3. preparation of an EIR for the Comprehensive Plan. This EIR may be combined with the EIR for the 2007 Regional Transportation Plan. As a precursor to these activities, staff has developed a preliminary matrix for performance outcome among a broad range of categories. The process to refine these outcomes would be centered upon creating specific, measurable objectives, where currently generalized variables to measure are indicated. This preliminary matrix is attached here and is presented at this time for the Task Force's consideration and discussion. ## Matrix of Performance-based Measures that Encourage Environmentally Preferable Forms of Development [Note: The Performance Outcomes in the third column are illustrative and indicative, at this stage. They will be further refined and better specified in subsequent iterations, in terms of quantifiable thresholds and measures, so as to better assure the intended outcomes.] | Resource Category | Performance Criteria | Performance Outcomes | |-------------------|----------------------|---| | Land Use | Land Consumption | Reduce the amount of raw land converted for development | | | | Restrict the subdivision of
large exurban agricultural
lands into low density large
lots | | | Development Location | Increase the proportion of
development in
predetermined "smart"
locations (e.g., SCAG's 2%
Strategy) | | | | Increase the proportion of
development in locations
with positive planning
attributes (transit-oriented
development, mixed use
development, activity
centers, adaptive reuse) | | | | Increase development that
generates positive impacts
on transportation model
outcomes (increase transit
use, reduce single-
occupancy vehicle miles
traveled, etc.) | | | Urban Design | - Improve street connectivity index | | | | Increase densities in dwelling
units per acre, and in jobs
per acre, around transit
centers and transportation
corridors | | | Land Use Integration | - Improve accessibility index
(make jobs and services
available in residential areas
and make residential units
available near jobs and
service areas) | | Resource Category | Performance Criteria | Performance Outcomes | |-------------------|--|---| | Transportation | Mobility: Increase average
daily travel speeds across
modes | 10% Improvement over baseline | | | Mobility: Reduce average travel delay | 40% Improvement | | | <u>Accessibility</u> : Maximize percent PM work trips within 45 minutes of home | Auto: 90%
Transit: 37% | | | <u>Accessibility</u> : Improve distribution of work trip travel times | Auto: 8% Improvement Transit: 8% Improvement | | | Reliability: Percent variation in travel times | 10% Improvement | | | Productivity: Enhance
roadway capacity during peak
operating conditions | 20% Improvement at known bottlenecks | | | Preservation: Maintenance
cost per capita to preserve
system at base-year
conditions | Maintain current conditions | | | <u>Safety</u> : Improve safety by
minimizing accidents per
million vehicle miles by mode | 0.3% Improvement | | | <u>Sustainability</u>: Total cost per
capita to maintain current
system performance | \$20 per capita (primarily in preservation costs) | | | Cost-effectiveness: Benefit-
to-cost ratio for investments
in appropriate improvements
to delay, safety, air quality
and vehicle operating costs | \$5.00 system-wide | | | Environmental Justice: Expenditures per quintile by ethnicity | Maintain no disproportionate impact to any group or quintile. | | Air Quality | • Ozone | 1-hour Ozone: 0.12 ppm
8-hour Ozone: 0.08 ppm | | | Particulate matter | PM10: 50 μg/m3
PM2.5: 15 μg/m3 | | | Greenhouse Gas Emissions | - State Standards | | | Toxic Air Contaminants (Diesel) | - Significance Thresholds | | Resource Category | Performance Criteria | Performance Outcomes | |------------------------|-----------------------|--| | Housing | Supply | Provide an adequate supply of housing for all Californians | | | | Provide for adequate
housing choice and
adequate affordability | | | Shortages | Minimize deleterious impacts of housing shortage and mismatch on the State's economy and well-being | | | Distributional equity | - Provide a clear level of baseline responsibility for regions, sub-regions, and local governments such that each is expected to "take care of its own" | | | Location efficiency | - Ensure that housing is located so that impacts on open space, habitat, and agricultural land are limited, and efficient use of transportation and infrastructure systems is realized | | Habitat and Open Space | Conservation | Increase the amounts of
wildlife-suitable habitat land
set-asides | | | Fragmentation | Improve connectivity between habitat patches | | | Percolation | Optimize the percolation of
habitat elements into urban
and sub-urban development
by using native vegetation | | | Integration | Increase the inter-usability of
land both for natural
processes and functions as
well as for human needs | | | | Increase the use of native
vegetation in urban
landscaping practices so as
to better integrate nature with
human habitation | | Water Supply | Adequacy | - Ensure dry weather supply | | | Recharge | Increase opportunities for
ground water infiltration | | Resource Category | Performance Criteria | Performance Outcomes | |--|--|--| | | Conservation | Reduce water consumption
by increasing the extent to
which native, drought-
resistant vegetation is used
for landscaping (xeriscape) | | | | Reduce water consumption
by using conserving
plumbing fixtures | | Water Quality | In-Stream Standards (Basins & Bays) | - Biochemical oxygen demand (BOD) | | | | - Total Dissolved Standards | | | | - Beneficial Uses | | | Best Management Practices (Jurisdictional) | - | | | Pervious surface | Minimize impervious surface
coverage by using compact
forms of development | | | | Increase pervious surfaces
by encouraging porous
paving materials | | | Storm water retention | Increase on-site storm water
retention using swales and
other techniques that allow
for natural pollution
mitigation | | | Runoff control | Minimize urban runoff by
using low-impact
development techniques to
improve ground water
infiltration | | | Treatment | Incorporate the use of low-
impact water quality
treatment technologies into
development design | | Energy | Supply | - Peak hour energy targets | | Solid Waste and Hazardous
Materials | DisposalDiversion | Manage disposal sites for adverse environmental impacts | | | | Improve landfill diversion rates | | Noise | Thresholds | Establish decibel levels by location and land use | ## M E M O | Resource Category | Performance Criteria | Performance Outcomes | |-------------------|----------------------|------------------------------| | Geology and Soils | Risk Determination | - Earthquake zones | | | | - Flood plains and hillsides | | | Soil Health | - Microbial biodiversity |